Analysis of compressive sensing with optical mixing using a spatial light modulator.
نویسندگان
چکیده
Compressive sensing (CS) in a photonic link has a high potential for acquisition of wideband sparse signals. In CS it is necessary to mix the input sparse signal with a pseudorandom sequence prior to subsampling. A pulse shaper with a spatial light modulator (SLM) can be used in photonic CS as an optical mixer to improve the speed of mixing. In this approach, the sparse signal is modulated on a chirped optical pulse and the pseudorandom sequence is recorded on the SLM within the pulse shaper. The optical mixing in the frequency domain is realized based on the principle of frequency-to-time mapping. In this paper, we investigate the performance and limitations of photonic CS with an SLM in detail. A theoretical model to describe optical mixing based on frequency-to-time mapping is presented. We point out that there is an upper limit on the length of the pseudorandom sequence recorded on the SLM that can be mixed with the sparse signal due to the condition of the far-field approximation of the frequency-to-time mapping. Since the length of the pseudorandom sequence is one of the major factors that affect the signal recovery performance in CS, this limitation should be fully considered in the system design of the CS with optical mixing in the frequency domain. We present numerical and experimental results to verify the theoretical findings. Discussion on the performance improvement is also presented.
منابع مشابه
Video Compressive Sensing for Spatial Multiplexing Cameras Using Motion-Flow Models
Spatial multiplexing cameras (SMCs) acquire a (typically static) scene through a series of coded projections using a spatial light modulator (e.g., a digital micro-mirror device) and a few optical sensors. This approach finds use in imaging applications where full-frame sensors are either too expensive (e.g., for short-wave infrared wavelengths) or unavailable. Existing SMC systems reconstruct ...
متن کاملCompressive holography with a single-pixel detector.
This Letter develops a framework for digital holography at optical wavelengths by merging phase-shifting interferometry with single-pixel optical imaging based on compressive sensing. The field diffracted by an input object is sampled by Hadamard patterns with a liquid crystal spatial light modulator. The concept of a single-pixel camera is then adapted to perform interferometric imaging of the...
متن کاملCompressive Coded Aperture Keyed Exposure Imaging with Optical Flow Reconstruction
This paper describes a coded aperture and keyed exposure approach to compressive video measurement which admits a small physical platform, high photon efficiency, high temporal resolution, and fast reconstruction algorithms. The proposed projections satisfy the Restricted Isometry Property (RIP), and hence compressed sensing theory provides theoretical guarantees on the video reconstruction qua...
متن کاملCompressive wavefront sensing with weak values.
We demonstrate a wavefront sensor that unites weak measurement and the compressive-sensing, single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a variable waveplate, we weakly couple an optical field's transverse-position and polarization degrees of freedom. By placing random, binary patterns on the SLM, polarization serves as a meter for directly measuring random proj...
متن کاملCompressive Echelle Spectroscopy
Building on the mathematical breakthroughs of compressive sensing (CS), we developed a 2D spectrometer system that incorporates a spatial light modulator and a single detector. For some wavelengths outside the visible spectrum, when it is too expensive to produce the large detector arrays, this scheme gives us a better solution by using only one pixel. Combining this system with the “smashed fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 54 8 شماره
صفحات -
تاریخ انتشار 2015